- 电话:021-69515711
- 手机:13818065015
- 传真:021-69515712
- 1049485
- 8459743
- 1993509414
- :renrimarket
- market@renri.com.cn
为了加强对放射性废液排放的监督管理,保障人体健康,保护环境,根据《中华人民共和国放射性污染防治法》《电离辐射防护与辐射源安全基本标准》《 医用放射性废物的卫生防护管理》等相关法规与标准的要求,考虑人为操作失误及放射性废液错误排放后可能引发的严重环境危
简介: REN700型通道式车辆放射性检测系统是用于对通过通道的卡车、集装箱等车辆内运输物品的放射性污染及辐射泄露水平的全天候探测系统。该系统具有灵敏度高、探测范围广、响应时间短等特点,可实现自动辐射报警、自动数据存储、自动抓拍通过车辆照片等功能。主要安装在核
REN500A型环境监测用X、γ辐射空气比释动能率仪(又叫 智能化х、γ辐射仪)采用高灵敏的闪烁晶体作为探测器,反应速度快,该仪器具有较宽的剂量率测量范围。 该仪器除能测高能、低能γ射线外,还能对低能X射线进行准确的测量,具有良好的能量响应特性。此外
本报警仪由REN300A在线辐射安全报警仪和REN-3He-N中子探头和REN-GM-L X、伽玛探头组成。该辐射报警装置是采用特殊设计的前置放大电路,具有灵敏度高、操作方便、自动显示、数据存储和超阈值报警等特点,能实时给出x射线、γ射线、中子射线的辐射剂量率。考虑到现场操作、应急快速响应的需要,主
REN600A型α、β、γ射线表面污染检测仪即可检测α、β、γ射线,也能检测到X射线,它采用高速嵌入式微处器作为数据处理单元,点阵式大屏幕LCD液晶显示,读数清晰、操作方便,具有400条超大容量数据存储。仪器采用进口的大面积MICA盖革探测器,具有较高探测效率,可进行α、β辐射表面污染检测和X、γ辐
REN500H辐射防护用X、γ辐射剂量当量(率)仪是监测各种高剂量放射性工作场所的辐射剂量率专用仪器。仪器满足《环境地表γ辐射剂量率测定规范》中高剂量部分的要求。该仪器除能测高能γ射线外,还能对低能X射线进行准确的测量,具有良好的能量响应特性。此外通过配套的RenRiRate辐射剂量管理软件可将存储
REN400型多功能辐射检测仪是以内置高灵敏度盖格计数管为探测器,外接不同类型的探头来实现对低剂量χ、γ射线,高剂量χ、γ射线,α、β射线和中子射线的检测。作为多功能辐射巡测仪,能显示工作场所的辐射值,自动连续测量和记录280万条辐射剂量率数据,更换
环境空气中氡的标准测量方法(GB/T 14582-93)(二)
2006/11/9 10:45:00
GB/T 14582-93《环境空气中氡的标准测量方法》(二)
Standard methods for radon measurement
in environmental air GB/T 14582—93
5 双滤膜法
5.1方法提要
此方法是主动式采样,能测量采样瞬间的氡浓度,探测下限为3.3Bq/m3。
采样装置如图3所示。抽气泵开动后含氡气经过滤膜进入衰变筒,被滤掉子体的纯氡在通过衰变筒的过程中以生成新子体,新子体的一部分为出口滤膜所收集。测量出口滤膜上的α放射性就可换算出氡浓度。
图3 双滤膜法采样系统示意图
1-入口膜;2-衰变筒;3-出口膜;4-流量计;5-抽气泵
5.2 设备或材料
a.衰变筒,14.8L;
b.流量计,量程为80L/min的转子流量计;
c.抽气泵;
d.α测量仪,要对RaA、RaC/的α粒子有相近的计数效率;
e.子体过滤器;
f.采样夹,能夹持¢60的滤膜;
g.秒表;
h.纤维滤膜;
i.α参考源,24lAm或239Pu;
j.镊子。
5.3 测量前的检查
5.3.1 采样系统检查
a.抽气泵运转是否正常,能否达到规定的采样流速。
b.流量计工作是否正常。
c.采样系统有无泄漏。
5.3.2 计数设备检查
a.计数秒表工作是否正常。
b.α测量仪的计数率和本底有无变化。
c.检查测量仪稳定性,对α源进行每分钟一次的十次测量。对结果进行X2检验,若工作状态不正常,要查明原因,加以处理。
5.4 布点
5.4.1 室内测量
室内采样测量应满足下列要求:
a.布点原则与采样条件要满足附录A(补充件)A2的要求。
b.进气口距地面约1.5m,且与出气口高度差要大于50cm,并在不同方向上。
5.4.2 室外测量
在室外采样测量应满足下列要求:
a.采样点要有明显的标志。
b.要远离公路,远离烟囱。
c.地势开阔,周围10m内无树木和建筑物。
d.若不能做24h连续测量,则应在上午8-12时采样测量,且连续2d。
e.在雨天,雨后24h内或大风过后12h 内停止采样。
5.5 记录
采样期间应记录的内容见附A(补充件)A3。
5.6 操作程序
a.装好滤膜,按图3把采样设备联接起来。
b.以流速q(L/min)采样t min。
c.在采样结束后T1-T2时间间隔内测量出口膜上的α放射性。
d.用式(4)计算氡浓度:
式中:CRn——氡浓度,Bq/m3;
Kt——总刻度系数,Bq/m3计数;
Na——T1~T2间隔的净α计数,计数;
V——衰变筒容积,L;
E——计数效率,%;
η——滤膜过滤效率,%;
β——滤膜对α粒子的自吸收因子,%;
Z——与t、T1~T2有关的常数;
F1——新生子体到达出口滤膜的分额,%。
5.7系数标定
5.7.1E的确定方法
a.在与样品测量相同的几何条件下,测得α标准源的净计数率;
b.将计数率除以源的活度,即得到计数效率E;
c.针对不同的探测器要进行能量修正。
5.7.2 β的正确方法
a.按规定采样条件,将氡子体收集在滤膜上。等待30min后,在相同的条件下依次快速地(如每次1min)测量滤膜正面、反面反正面盖上同类质量厚度相近的空白滤膜后的α计数,记为C1、C2、C3;
b.按式(5)计算β:
式中:C1——正面α计数率,计数/min;
C2——反面α计数率,计数/min;
C3——正面盖上同类空白滤膜后的α计数率,计数/min。
c.对每一批滤膜都要测定β值,每次至少测3个样品,求出β平均值。
5.7.3 η的测定方法
a.选2张质量厚度相近的滤膜,重叠在一起,滤膜之间要有2.0mm的距离。以规定的流速采样5min;
b.采样结束后,将2张滤膜分别装在两个同样的采样头上,在同一台仪器上交替测量或在两台仪器上平行测量(两台仪器效率不同加以修正),得到两条衰变曲线;
c.取同一时刻或同一时间间隔的计数,得到n1、n2,代入式(6)即得η值。
式中:n1——第一张滤膜计数;
n2——第二张滤膜计数。
5.7.4 Z的确定方法
a.用式(7)求出氡通过衰变筒的时间:
式中:Ts——氡通过衰变时间,s;
l——衰变筒长度,cm;
S——衰变筒横截面积,cm2;
q——采样流速,L/min。
b.当Ts<10s时,由表1查Z值。
表 1 Z 值表( T s < 10s ) t,min 5 5 5 5 10 10 10 10 15 15 15 15 T 1 ,min 1 1 1 1 1 1 1 1 1 1 1 1 T 2 ,min 6 15 30 100 6 15 30 100 6 15 30 100 Z 1.673 2.597 3.411 6.314 2.312 3.803 5.425 11.068 2.656 4.634 7.070 15.281 c. 当 T s ≥ 10s 时,由表 2查 Z 值。 表 2 Z 值表( T s ≥ 10s ) T s s t min T 1 ~ T 2 , min 1 ~ 11 1~ 21 1~ 31 Z σ,% Z σ,% Z σ,% 10 5 2 .273 1.64 2.890 1.40 3.425 1.18 10 3.274 1.48 4.403 1.19 5.481 0.94 20 4.403 1.19 6.634 0.82 8.797 0.62 30 5.461 0.94 8.797 0.62 11.898 0.46 60 8.506 0.63 14.570 0.40 20.166 0.31 40 5 2.165 6.32 2.774 5.32 3.310 4.50 10 3.108 5.70 4.255 4.49 5.334 3.60 20 4.255 4.49 6.480 3.15 8.640 2.38 30 5.334 3.60 8.640 2.38 11.820 1.78 60 8.363 2.42 14.401 1.50 19.997 1.15 90 5 2.002 13.37 2.599 11.23 3.136 9.52 10 2.898 12.07 4.031 9.52 5.111 7.63 20 4.031 9.52 6.24 6.68 8.404 5.05 30 5.111 7.63 8.424 5.65 11.580 3.77 60 8.123 5.10 14.145 3.31 19.716 2.54
5.7.5 Ff的确定方法
a. 按式(8)计算μ:
式中:μ——无量纲常数;
D——新生子体的扩散系数,0.085cm2/s;
l——衰变筒长度, cm;
q——采样流速,cm3/s。
b.根据μ值从表3中查出Ff值。
表3 Ff值表
μ |
F f |
μ |
F f |
μ |
F f |
μ |
F f |
μ |
F f |
0.005 |
0.877 |
0.06 |
0.654 |
0.16 |
0.562 |
0.45 |
0.320 |
1.50 |
0.110 |
0.008 |
0.849 |
0.07 |
0.633 |
0.18 |
0.481 |
0.50 |
0.282 |
2.00 |
0.083 |
0.01 |
0.834 |
0.08 |
0.614 |
0.20 |
0.462 |
0.60 |
0.248 |
2.50 |
0.067 |
0.02 |
0.834 |
0.09 |
0.596 |
0.25 |
0.420 |
0.70 |
0.220 |
3.00 |
0.056 |
0.03 |
0.731 |
0.10 |
0.580 |
0.30 |
0.384 |
0.80 |
0.197 |
4.00 |
0.042 |
0.04 |
0.705 |
0.12 |
0.551 |
0.35 |
0.349 |
0.90 |
0.178 |
5.00 |
0.033 |
0.05 |
0.678 |
0.14 |
0.525 |
0.40 |
0.324 |
1.00 |
0.162 |
5.8 质量保证措施
5.8.1 刻度
每年用标准氡室对测量装置刻度一次,得到总的刻度系数。
5.8.2 平行测量
用另外一种方法与本方法进行平行采样测量。用成对数据t检验方法来检验两种方法结果的差异,若t超过临界值,应查明原因。平行采样数不低于样品数的10%。
5.8.3 操作注意事项
a.入口滤膜至少要3层,全部滤掉氡子体;
b.采样头尺寸要一致,保证滤膜表面与探测器之间的距离为2mm左右;
c.严格控制操作时间,不得出任何差错,否则样品作废;
d.若相对湿度低于20%时,要进行湿度校正;
e.采样条件要与流量计刻度条件相一致。
产品名称:REN-GM-L型GM管中量程射线探头
产品描述:REN系列智能化辐射探头均可和REN300、REN300A、REN300B系列主机配套使用,也可以单独配套RenRiArea辐射区域监测软件使用。且具有RS485/RS232的通讯能力。所有探头均可单独外接报警灯,在超阈值的情况下就地给出声光报警。 1、测量射线类型:X、γ射线2、探测器:GM管探
产品名称:REN300型在线x-γ辐射安全报警仪
产品描述: REN300在线x-γ辐射安全报警仪是一种新型的x-γ辐射连续监测报警装置,它采用特殊设计的前置放大电路,具有灵敏度高、操作方便、自动显示、数据存储和超阈值报警等特点,能实时给出xγ辐射剂量率。考虑到现场操作、应急快速响应的需要,主机安装在辐射现场,实现实时监测与就地报警,通过RS48
产品名称:RenRiArea区域辐射监测系统
产品描述:为了加强对放射源和射线装置安全运行的监督管理,保障人体健康、保护环境,根据辐射防护三原则与国家相关标准的要求,考虑人为操作失误、射线装置和放射源意外故障等原因可能引发的放射性危害,有必要建设一套在线xγ射线监测报警系统。 在线式xγ射线监测报警系统通过计算机远程集中监测,完成对放射性
产品名称:REN300A型在线辐射安全报警仪
产品描述: REN300A在线辐射安全报警仪是一种新型的x-γ辐射连续监测报警装置,它采用特殊设计的前置放大电路,具有灵敏度高、操作方便、自动显示和超阈值报警等特点,能实时给出xγ辐射剂量率;仪器内置海量数据存储功能,能存储10年的历史数据且标配提供强大的RenLocal辐射监测数据分析软件。考虑
产品名称:REN500T长杆x-γ剂量率仪
产品描述: REN500T是手持式仪表可用来监测X、γ辐射剂量率。用于各种γ辐射场或环境γ辐射的监测工作。仪器配有伸缩长杆,可用于测量人员不易到达或有较强放射性存在的场所,为使用人员提供有效保护。此外通过配套的RenRiRate辐射剂量管理软件可将存
产品名称:REN500型智能化χ、γ辐射仪
产品描述: REN500型智能化χ、γ辐射仪采用高灵敏的闪烁晶体作为探测器,反应速度快, 和国内同类仪器相比,该仪器具有更宽的剂量率测量范围。 该仪器除能测高能、低能γ射线外,还能对低能X射线进行准确的测量,具有良好的能量响应特性。此外通过配套的Re